Design Solutions

Site search Advanced

Keeping Patient Mobility On Track

17 April 2018

A medical technology supplier envisaged an innovative diverter unit for tracked ceiling hoists to enhance the efficiency and comfort in transporting patients between hospital treatment and consulting rooms. Electromagnetic actuator specialist, Magnet Schultz Ltd, took on the design of the critical ‘diverter’ component, but finished up delivering the entire system prototype. All in a two-month development window.

Used widely in hospitals, hydrotherapy areas, schools, and care centres, tracked ceiling hoists (figure 1) are invaluable mobility aids for people with disabilities and for rehabilitation after a stroke or sports accident. They help patients reach areas that are difficult to access. A hydrotherapy pool is a great example: the therapy is known to be highly effective for managing chronic conditions or aiding recovery, but entering and leaving the pool can be challenging for patients and support is needed throughout the treatment session for safety reasons.


Eliminating the turntable

Conventional ceiling track systems typically use a rotary turntable mechanism in a central location. To move a patient from one area to the next, the hoist is driven to the turntable, rotated around the mechanism until it aligns with the exit track, and then driven on to its destination. The journey can be annoyingly long, for instance when simply wishing to move to an adjacent room. An efficiency improvement was conceived that deploys a function equivalent to a set of railway line points in the track. This required the design of a special ‘diverter’ device with the ability to switch on demand. A solenoid actuator would be the optimum solution.

Magnet Schultz Ltd (MSL) is a world leader in the design and development of special purpose electromagnetic subassemblies, and an astute outsource partner for electromechanical development teams. That was the basis upon which the company was initially contracted to design and prototype the diverter unit.

The customer had limited design and prototype capabilities in-house. The original diverter unit design and improvised mechanical mock-up used an imported conventional solenoid that would neither deliver the required performance, nor provide the working life. Upon studying this, MSL’s experts advised immediate changes, and quickly took over the task of engineering the complete diverter mechanism, offering a faster, more reliable and cost-effective route to a testable pre-production model (figure 2).


Rethinking design at the module level

A focus on the complete subassembly solution allowed MSL to base its prototype on a powerful standard solenoid to fit the electrical design, but then to further customise this to suit the diverter application. Re-imagining the design for the physical ‘pivoting blade’ mechanism was instrumental in informing the development process how best to position the actuator within the diverter module, to achieve the dependable physical switching required.

The function of the diverter called for a strong, single-acting solenoid that energised in one direction to move the blade with a spring mechanism to return. Position sensing would use a pair of microswitches to confirm mechanical actuation and provide feedback to the controller. The standard solenoid was customised to feature an over-moulded and encapsulated coil to prevent moisture ingress, and corrosion-inhibiting nickel-plated armature and stainless-steel return spring. It is continuously rated to cater for a constant power-on state.

During the electromechanical design process, the design team also developed novel interchangeable features that meant one set of parts would work for both a left-hand and right-hand variant of the diverter module. Such design enhancements helped to simplify the manufacturing of the diverter blade and reduce bill of materials costs.

MSL engineers designed the mechanism to minimise power consumption and respond quickly to user commands received from the hoist’s remote controller. In its quiescent state – the ‘straight on’ default position on the ceiling track – the solenoid draws no power: such low consumption helps to minimise demands on the system power supply, in turn allowing the use of a small and lightweight unit to help ensure a competitive price tag for the diverter.


An expanding design brief

With the diverter module design a success, MSL was then invited to take on development aspects of other key parts of the transporter system. While MSL’s core competency is the design and customisation of application-specific solenoid mechanisms, the company increasingly provides whole system solutions and has a broad portfolio of successful projects in its ‘back catalogue’. Among these are concealed sub-floor door locking solutions for historic buildings, rapid lockdown anti-piracy protection mechanisms for Superyachts, and Fire Containment systems for portable buildings.

Each project features solenoid actuation at its heart. On some projects, MSL is called in at the outset: the informed design community knows where the focused expertise lies. But many begin life when MSL is called in to address design problems, typically where an off-the-shelf actuator function becomes a development bottleneck or there’s a knowledge shortfall in-house. That was the case with the diverter module for the patient transport system.

The expanded brief saw the MSL engineering team undertake the development of the wall-mounted power supply and controller for the diverter, including environmental considerations based on likely installation locations. The mains-powered control box design uses an IP-rated enclosure. The electrical internals are simple, comprising IP-rated switches and LED indicators to show the direction of the ceiling-mounted diverter, and a transformer to supply the 12V rail needed to drive the electrical system and the solenoid.

From initial CAD drawings, to photo-realistic rendered models, and on to 3D-printed and machined prototypes for ready testing, MSL delivered a complete solution for the diverter module. The target outcome is to reduce the journey distances and waiting times associated with ‘turntable-style’ rotary hoist diverters, while improving comfort for patients and overall efficiency in care environments.

Industry Connections: Magnet Schultz Ltd

Search for a product/supplier:
-September 2019+