READ THE LATEST
DIGITAL ISSUE

Electronics

Site search Advanced


NI and the University of Edinburgh collaborate on MIMO technique to advance future of 5G

Published: 20 November 2013 - Michelle Winny

National Instruments and the University of Edinburgh are jointly developing a test bed to drive forward indoor wireless communications capacity. Professor Harald Haas, lead researcher at Edinburgh has pioneered a next-generation massive multiple input, multiple output (MIMO) technique, referred to as spatial modulation, to power a highly energy efficient capacity increase in another step on the path toward fifth-generation (5G) wireless communications.

Haas and Professor Cheng-Xiang Wang, head of the Advanced Wireless Technologies Lab at Heriot-Watt University, recently used NI PXI Express hardware and NI LabVIEW system design software to create the first working prototype showing spatial modulation techniques over a wireless RF channel. Previously Haas demonstrated a concept, nicknamed LiFi, using visible light communication over a single-channel, point-to-point link. He now plans to combine these technologies to create even higher density optical wireless networks—called optical attocell networks—that will harness massive MIMO gains in both the optical and RF domains for energy-efficient indoor wireless communications.

We’ve known for a long time that decreasing cell size can significantly increase cellular capacity and user data rates, but it’s not been clear how we could facilitate that given current spectrum, energy and interference limitations,” said Haas.

“RF wireless and optical wireless networks that work together using spatial modulation and massive MIMO approaches could allow us to effectively mitigate interference and significantly increase energy efficiency, coverage and capacity using existing infrastructure.”

The Edinburgh team is extending its research capabilities with the NI’s LabVIEW reconfigurable I/O (RIO) architecture for rapid prototyping. Using the company’s FlexRIO Software Defined Radio Bundle with reconfigurable FPGAs and interchangeable I/O adapter modules, the team is building prototypes that operate beyond the rates of a commercial RF wireless system. The team recently achieved 3.5Gbit/s from a single colour LED, allowing them to create an ultra-realistic test bed.

National Instruments

uk.ni.com

Source: Electronics
Industry Connections: National Instruments Corp (UK) Ltd


 
Search for a product/supplier:
 
   
-August 2020+
SMTWTFS
2627282930311
2345678
9101112131415
16171819202122
23242526272829
303112345